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ABSTRACT 

 

Open Computing Language (OpenCL) is a high-level 

language that enables software programmers to explore 

Field Programmable Gate Arrays (FPGAs) for application 

acceleration. The Intel FPGA software development kit 

(SDK) for OpenCL allows a user to specify applications at 

a high level and explore the performance of low-level 

hardware acceleration. 

In this report, we present the FPGA performance and power 

consumption results of the single-precision floating-point 

vector add OpenCL kernel using the Intel FPGA SDK for 

OpenCL on the Nallatech 385A FPGA board. The board 

features an Arria 10 FPGA. We evaluate the FPGA 

implementations using the compute unit duplication and 

kernel vectorization optimization techniques. On the 

Nallatech 385A FPGA board, the maximum compute kernel 

bandwidth we achieve is 25.8 GB/s, approximately 76% of 

the peak memory bandwidth. The power consumption of 

the FPGA device when running the kernels ranges from 

29W to 42W. 

1. INTRODUCTION 
The OpenCL standard is an open programming model for 

accelerating algorithms on heterogeneous computing 

system. OpenCL extends the C-based programming 

language for developing portable codes on different 

platforms such as CPU, GPU, DSP and FPGA. The Intel 

FPGA SDK for OpenCL is a suite of tools that allows 

developers to abstract away the complex FPGA-based 

development flow for a high-level software development 

flow. Users can focus on the design of hardware-

accelerated kernel functions in OpenCL and then direct the 

tools to generate the low-level FPGA implementations. 

Vendors offer board support package (BSP) variants to 

support different applications on their boards. The BSP 

leverages the on-board and low-level resources on FPGAs 

to allow users to quickly develop applications without 

manually building the hardware basic blocks. Users can 

focus on the algorithm implementation on FPGAs rather 

than the physical implementation at the board level.  

With the SDK and BSP tools, users can evaluate the 

performance of an FPGA implementation of a kernel within 

one day though the FPGA compile time is still quite slow 

(typically several hours) from the software development 

aspect.  

2. BACKGROUND 

2.1 OpenCL application 
An OpenCL application consists of host and kernel 

programs. The OpenCL host program is written in standard 

C/C++ that runs on most of modern microprocessors. The 

host allocates data arrays in the global memory that will be 

read by the kernel.  When the data are ready for the kernel, 

the host can launch the kernel that will be executed on an 

FPGA device. A kernel typically executes computation by 

reading data from global memory as specified by the host, 

processing it, and then writing the results back into global 

memory. When the results are ready, they can be read by 

the host for post-processing. 

2.2 Nallatech 385A  
Nallatech provides OpenCL board support packages for 

OpenCL users. Nallatech 385A is a PCIe-based FPGA 

accelerator card. It features an Arria 10 GX1150 FPGA 

device, PCIe x8 Generation 3 host interface, and two banks 

of 4GB DDR3 memory. The theoretical peak floating-point 

performance is 1.5 TFLOPS and the theoretical peak 

memory bandwidth approximately 34 GB/s. 

3. KERNEL APPLICATION 

3.1 OpenCL vector add  
Our case study is the OpenCL single-precision floating-

point vector add kernel based on the design example [1]. 

The vector add kernel sums up the two vectors X and Y and 

then store the results in another vector Z. Figure 1 shows 

the OpenCL vector add kernel. Each work item (thread) in 

the global space reads two elements from X and Y and 

writes the sum into Z. The inputs and output are read from 

and written to the global external DDR memory.  This 

kernel can illustrate the impact of different kernel 

configurations on the performance of the kernel 

implementations using the Intel Altera SDK. 

__kernel void vector_add(__global float *x,  

                         __global float *y,  

                         __global float *z)  

{ 

   int i = get_global_id(0); 

   z[i] = x[i] + y[i]; 

} 

Figure 1. The OpenCL vector add kernel 
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3.2 Kernel optimizations 
As described in [2], users can take advantage of compute 

unit replication and kernel SIMD vectorization to achieve 

higher throughput or lower kernel time. The compute 

device replication generates multiple compute units for 

each kernel. Each compute unit has its own memory access 

interface. The SIMD vectorization duplicates only the data 

path of the compute unit without generating additional 

memory interfaces. When the kernel is vectorized, the static 

memory coalescing is performed automatically by the 

compiler to generate a memory interface that can coalesce 

the multiple memory loads into a single wide load.  While 

there is no limit to the number of kernel copies that users 

can specify, the number of SIMD lanes must be a power of 

two. The compiler will give a warning when the width of 

all the lanes exceeds the memory interface data width. 

4. PERFORMANCE EVALUATION 
In this work, a host system is set up with two 2.6 GHz Intel 

Xeon processors and 32GB DDR3 memory for each node. 

The PCI Express provides a Gen3×8 connection. CentOS 

6.8 with Linux kernel 2.6.32 is installed as the operating 

system. We used Intel’s FPGA SDK for OpenCL version 

16.0.2 Pro Prime for producing the experimental results. 

Table 1.  Resource usage of the FPGA implementations 

Kernel  

type  

Native  

DSP(s)  

Logic  

utilization  

Memory  

bits 

RAM 

blocks 

default  1  12%  5% 13% 

cu2  2  12%  7% 15% 

cu4  4  13%  8% 18% 

cu8  8  16%  8% 24% 

cu16  16  20%  10% 37% 

cu32 32 29% 13% 62% 

cu48 48 38% 15% 86% 

simd2  2  13%  5% 13% 

simd4  4  13%  5% 13% 

simd8  8  13%  5% 13% 

simd16  16  13%  5% 13% 

simd16+cu2 32 13% 8% 15% 

simd16+cu4 64 15% 8% 18% 

simd16+cu8 128 18% 9% 24% 

simd16+cu16 256 26% 12% 35% 

simd16+cu32 512 41% 16% 58% 

simd16+cu48 768 57% 21% 81% 

 

Table 1 lists the FPGA resource usage reported by the SDK 

for the different implementations of the kernel. The default 

kernel is the example shown in Figure 1 without any kernel 

optimization. Replication of compute unit is represented as 

“cuX” where X indicates the replication times. We also 

include the combination of kernel duplication and 16-lane 

vectorization at the bottom of the table as “simd16+cuX”. 

The number of floating-point DSP blocks generated by the 

SDK depends on the kernel configurations. The logic 

utilization ranges from 12% to 57%. The RAM block usage 

increases significantly from 13% to 86% as the number of 

compute units increase from 2 to 48. When the number of 

compute units is 64 (cu64), the SDK fails to implement the 

design that requires more RAM blocks than the target 

device can provide. On the other hand, the SIMD 

vectorization maintains 13% logic utilization as the number 

of lanes increases from 2 to 16. Kernel vectorization 

duplicates only the data path of the kernel with little 

resource overhead for the additional control logics. 

 

Figure 2. Compute kernel bandwidth 

We use a vector size of 512M to measure the compute 

kernel bandwidth for each kernel mentioned above. The 

compute kernel bandwidth is defined as follows: 

BWkernel = 512 × 2
20

 × 12 / (kernel execution time) 

Each single-precision floating-point operation accesses 12 

bytes from the memory. As shown in Figure 2, the 

maximum bandwidth is 25.8 GB/s, approximately 76% of 

the peak memory bandwidth on the Nallatech 385A board. 

The hybrid kernel (SIMD16+cu4) achieves the maximum 

bandwidth. Kernel duplication increases the kernel 

bandwidth from 3.1GB/s (default) to 19.5GB/s (cu8) and 

from 21.1GB/s (SIMD16) to 25.8 GB/s (SIMD16+cu4). As 

more duplicate kernels are added, the bandwidth starts to 

diminish due to the external memory accesses contention. 

So the results for more than 16 duplicate kernels are not 

included in the report.  

Table 2 compares the ideal and actual speedup for each 

kernel using the 512M vector size. The ideal speedup is the 

number of compute units using kernel duplication and/or 

vectorization for a kernel while the actual speedup is the 

ratio of the execution time of the baseline kernel (default) 

to the execution time of the kernel using kernel duplication 

and/or vectorization. As seen in Table 2, SIMD2, SIMD4 

and cu2 achieve the expected speedup while the gap 

between the ideal and actual speedup gradually widens for 

other cases. Overall it is worthwhile to duplicate the kernel 

eight times or utilize eight vector lanes to achieve higher 

performance if resource usage is not a constraint. However, 

the performance gain diminishes significantly using more 

than eight DSPs for both kernel duplication and 

vectorization. 
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Table 2.  The ideal speedup vs. the actual speed 

Kernel type Kernel 

time (ms) 

Ideal 

speedup 

Actual 

speedup 

default 1954 1 1 

SIMD2 932 2 2 

SIMD4 472 4 4 

SIMD8 328 8 6 

SIMD16 284 16 6.9 

cu2 950 2 2 

cu4 584 4 3.3 

cu8 308 8 6.3 

cu16 345 16 5.7 

SIMD16+cu2 246 32 7.9 

SIMD16+cu4 233 64 8.4 

SIMD16+cu8 254 128 7.7 

SIMD16+cu16 272 256 7.2 

 

Figure 3 presents the power consumption in Watts of the 

FPGA device when each kernel is running on the Nallatech 

385A. The power measured is for 12V power supply. 

FPGA power consumption ranges from 29W to 42W. As 

shown in Figure 3, adding more compute kernels generally 

increases the power consumption. 

 

Figure 3. FPGA power consumption 

5. CONCLUSION 
The performance evaluation of the single-precision 

floating-point vector add OpenCL kernel on the Nallatech 

385A FPGA illustrates the impact of kernel optimizations 

on the performance and power consumption of the FPGA 

implementations. Compute kernel duplication and kernel 

vectorization can reduce the kernel execution time at the 

cost of more hardware resources. Compute device 

duplication requires a memory interface for each duplicated 

kernel while kernel vectorization only duplicates the data 

path of the kernel to utilize memory bandwidth more 

efficiently. 

Given the 512-bit user interface of the DDR3 memory 

controller implemented on the FPGA, the 16-lane SIMD-

based vector add kernels achieve the best compute kernel 

bandwidths. For the same number of DSPs and logic 

utilization, kernel vectorization is more efficient to improve 

the performance than the duplication. Heavy kernel 

duplication significantly diminishes the performance gain 

due to the memory access contentions. Overall SIMD 

kernel vectorization is the preferred optimization technique 

to reduce the kernel execution time when the external 

memory interface and the number of DSPs support SIMD 

computation. 
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